Thermal decomposition of a Mn compound (X) at 513 K results in compound (Y), MnO₂ and a gaseous product. MnO₂ reacts with NaCl and concentrated H₂SO₄ to give a pungent gas Z. X, Y and Z, respectively, are (2019 Main, 12 April II) (a) K₃MnO₄, K₂MnO₄ and Cl₂ (b) K₂MnO₄, KMnO₄ and SO₂ (c) KMnO₄, K₂MnO₄ and Cl₂ (d) K₂MnO₄, KMnO₄ and Cl₂ Thermal decomposition of Mn compound (X), i.e. $KMnO_4$ at 513 K results in compound Y(i.e. K_2MnO_4), MnO_2 and a gaseous product. MnO_2 reacts with NaCl and concentrated H_2SO_4 to give a pungent gas Z(i.e. Cl_2). The reactions involved are as follows: $$\begin{split} 2 \text{KMnO}_4 & \xrightarrow{513 \text{ K}} \text{K}_2 \text{MnO}_4 + \text{MnO}_2 + \text{O}_2(g) \\ \text{MnO}_2 + 4 \text{NaCl} + 4 \text{H}_2 \text{SO}_4 & \longrightarrow \\ & \text{MnCl}_2 + 4 \text{NaHSO}_4 + 2 \text{H}_2 \text{O} + \text{Cl}_2(g) \\ & (Z) \\ & \text{Pungent gas.} \end{split}$$